

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester		L	T	P	C
		3	0	0	3
ENGINEERING PHYSICS (BSC1102)					
(For All Non-Circuital Branches like ME, CE, Chemical etc.)					

COURSE OBJECTIVES

- 1. Bridging the gap between the physics in school at 10+2 level and UG level engineering courses.
- 2. To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications
- 3. Understand the mechanism for emission of light, utility of lasers as coherent light sources for low and high energy applications, study of propagation of light through optical fibers and their implications in optical communications.
- 4. Open new avenues of utility for dielectric and magnetic materials as potential sources for micro devices.
- 5. Familiarize the concepts of theoretical acoustics for their practical utility in engineering acoustics. Explanation for the significance of ultrasound and its application in NDT application.
- 6. Enlighten the periodic arrangement of atoms in Crystalline solids by Bragg's law Learning the structural analysis through X-ray diffraction.

COURSE OUTCOMES

- 1. Explain the need of coherent sources and the conditions for sustained interference (L2). Identify applications of interference in engineering (L3). Analyze the differences between interference and diffraction with applications (L4). Illustrate the concept of polarization of light and its applications (L2). Classify ordinary polarized light and extraordinary polarized light (L2) The different realms of physics and their applications in both scientific and technological systems are achieved through the study of wave optics.
- **2. Explain** various types of emission of radiation (L2). **Identify** lasers as tools in engineering applications (L3). **Describe** the construction and working principles of various types of lasers (L1). **Explain** the working principle of optical fibers (L2). **Classify the** optical fibers based on refractive index profiles and modes of propagation (L2). **Identify** the applications of optical fibers in medical, communication and other fields (L2). **Apply** the fiber optic concepts in various fields (L3).
- **3. Explain** the concept of dielectric constant and polarization in dielectric materials (L2). **Summarize** various types of polarization of dielectrics (L2). **Interpret** Lorentz field and Claussius-Mosotti relation in dielectrics (L2). **Classify** the magnetic materials based on susceptibility and their temperature dependence (L2). **Explain** the applications of dielectric and magnetic materials (L2). **Apply** the concept of magnetism to magnetic devices (L3).
- 4. **Explain** sound waves and its propagation/absorption of construction material used in design of buildings (L2). **Analyze** acoustic parameters of typical materials used in buildings (L4). **Recognize** sound level disruptors and their application in architectural acoustics (L2). **Identify** the use of ultrasonics in diversified fields of engineering (L3)
- **5. Interpret** various crystal systems (L2) and **Analyze** the characterization of materials by XRD (L4). **Identify** the important properties of crystals like the presence of long-range order and periodicity, structure determination using X-ray diffraction technique (L3). **Analysis** of structure of the crystals by Laue and Powder techniques (L2)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

Unit-I: Wave Optics 12hrs

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications -Colors in thin films- Newton's Rings- Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits(Qualitative) — Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- ➤ **Identify** engineering applications of interference (L3)
- ➤ Analyze the differences between interference and diffraction with applications (L4)
- ➤ Illustrate the concept of polarization of light and its applications (L2)
- Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Lasers and Fiber optics

10hrs

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion –Lasing action- Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle-Numerical Aperture-Classification of optical fibers based on refractive index profile and modes –Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes:

The students will be able to

- ➤ Understand the basic concepts of LASER light Sources (L2)
- ➤ **Apply** the concepts to learn the types of lasers (L3)
- ➤ **Identifies** the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)
- Classify optical fibers based on refractive index profile and mode of propagation (L2)
- ➤ **Identify** the applications of optical fibers in various fields (L2)

UNIT III: Engineering Materials

8hrs

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field- Clausius-Mossotti equation-Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classification of magnetic materials: Dia, para, Ferro, antiferro & Ferrimagnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials- Eddy currents- Engineering applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

Unit Outcomes:

The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- > Summarize various types of polarization of dielectrics (L2)
- ➤ Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials (L2)
- > Apply the concept of magnetism to magnetic devices (L3)

Unit-IV: Acoustics and Ultrasonics

10hrs

Acoustics: Introduction – requirements of acoustically good hall– Reverberation – Reverberation time– Sabine's formula (Derivation using growth and decay method) - Absorption coefficient and its determination – Factors affecting acoustics of buildings and their remedial measures.

Ultrasonics: Introduction - Properties - Production by magnetostriction and piezoelectric methods — Detection - Acoustic grating - Non Destructive Testing — pulse echo system through transmission and reflection modes - Applications.

Unit Outcomes:

The students will be able to

- **Explain** how sound is propagated in buildings (L2)
- ➤ Analyze acoustic properties of typically used materials in buildings (L4)
- **Recognize** sound level disruptors and their use in architectural acoustics (L2)
- ➤ **Identify** the use of ultrasonics in different fields (L3)

Unit-V: Crystallography and X-ray diffraction

8hrs

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters – Bravais Lattice – crystal systems (3D) – coordination number - packing fraction of SC, BCC & FCC - Miller indices – separation between successive (hkl) planes.

X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods.

Unit Outcomes:

The students will be able to

- ➤ Classify various crystal systems (L2)
- ➤ **Identify** different planes in the crystal structure (L3)
- ➤ Analyze the crystalline structure by Bragg's X-ray diffractometer (L4)
- > **Apply** powder method to measure the crystallinity of a solid (L4)

Text books:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company
- 2. Engineering physics D.K. Battacharya and Poonam Tandon, Oxford University press.
- 3. Engineering Physics by P.K.Palanisamy SciTech publications.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley & Sons
- 2. Engineering Physics M.R.Srinivasan, New Age Publications
- 3. Engineering Physics D K Pandey, S. Chaturvedi, Cengage Learning
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press